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Goal of this study

CRIGEN is involved in CO2 Capture
technologies. Two particularly promising
technical options using flue gas compression
followed by expansion have been identified :

Fluidized Bed : A proportion of CO2 is first
frozen in a FB, and the remainder during flue
gas expansion in a turbine.

Supersonic Expansion : CO2 is frozen and
captured as flue gases are thoroughly cooled in
an expansion nozzle operating at supersonic
regime.

) Solution evaluated here
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Context

Technology concept, available
iInformation

Goal of the study

1D numerical approach

2D approach based on 1D results
3D (CFD) modeling

Conclusions and Prospects
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Technology concept

Solid particles capture

e

C/D nozzle

~ 2 bars —t -l I ---------------------------------- ]
Flue gas from /.
comDpressor Swirl vanes
P in throat
Convergent ; Mach < 1 Throat ; Mach =1 ‘Divergent ; Mach 23-5
Subsonic regime Transitional regime + » Rapid isentropic expansion

» CO, freezing starts
» CO, solid particles to capture

« shock waves »

According to ATK and ACENT,
m Freezing starts at -113°C ~ 0.2 bar (P,)
m Targeted nozzle conditions at the divergent outlet : ~-138°C ~ 0.07 bar (P,.;)

m CO, solid particle density is 10 times higher than the gas one : swirling stream would
favor their recovery (centrifugal effect)
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Concept of the Technology : Feasibility
FREEZING PROCESS
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= Industrial Scale Concept — data from ATK and ACEnT

—>1.5 m supersonic nozzle diameter (C-D nozzle)

v/~ 45 MW,
—>Supersonic nozzle length would be below 5 m.

v'"Moderate footprint of the facility

- About 12 nozzles for a conventional coal power plant

IGRC 2014 — GDF SUEZ Numerical Approach for CO, capture in flue gases within a supersonic nozzle




Goal of the study : does at it work as stated ?
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- To answer this question :

Check CO, frosting feasibility
= Does the system reach (P,T) conditions for which CO, would desublimate ?
= How much CO, would desublimate ?

Check nozzle sizing provided by ATK and ACEnT

Check the impact of shock waves on the nozzle performance

= How do shock waves induced by supersonic flow impact (P, T) conditions ?
—> Are conditions for desublimation still reached ?
—> Are there areas where CO, particles could sublimate again ?

= Would CO, particles move to wall regions due to supersonic stream and shock
waves interactions?

Check the impact of desublimation phenomenon on the nozzle
performance

= How would the latent heat released by CO, desublimation impact on (P,T) conditions
in the nozzle ?

= How would the change in mass rate impact on (P,T) conditions in the nozzle ?

IGRC 2014 — GDF SUEZ Numerical Approach for CO, capture in flue gases within a supersonic nozzle



— —_— _— —_— _— — _— L
FiamLtaar de la by s ()

(]

Modeling approach to answer these questions
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L evel of accuracy
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Fundamental approach
and feasibility

= Nozzle shape

= Rough sizing

=Sensitivity study on main
operating parameters

= P, T, M profile = frosting ?

=
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Identification of fluid
heterogeneity

» Impact of shock waves
» Corrected (P, T,M) profile
-> Still frosting ?
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One step towards full
characterization

= Full 3D Euler-Euler
approach

= Steady / unsteady
phenomena
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Modeling approach to answer these questions

Level of accuracy >
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Fundamental approach
and feasibility

= Nozzle shape |:>

= Rough sizing

=Sensitivity study on main
operating parameters

= P, T, M profile = frosting ?
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1D Numerical Approach : methodology

m Matlab® program written at CRIGEN
= Estimates the maximum flue gas mass flow that could be treated
= Calculates the nozzle dimensions with targeted exit properties (P, T)
= Calculates the flow properties in the supersonic nozzle
= Models shock waves starting from the throat : nozzle shape corrected within 1D approach

m Methodology

El 4 . . ) / Flue gas \ (" Nozzle
ue gas Dimension . dimensions
properties | > of the expansion in and fluid
. I:> the divergent, .
throat, fluid : : : properties
: : : increasing size
Dimension properties of the nozzle along the
of the E> calculation \_.whole nozzle /
collector N\

algorithm

section (¢ )
[ lterative J

No | Fluidexits | 'esS
at targeted

\_properties? /
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1D Numerical Approach : Hypothesis and Conditions

m 1D axis-symetrical computations
m Isentropic Compressible Flow with area change
= Andersen works for 1D and pseudo 2D (correction with shock waves locations)
m Normal shock waves in the duct
m Flue gas (85%N, - 15%CO,) treated as a perfect ideal gas

m Boundary conditions for flue gas at the inlet :
= Mass flow rate : 80 kg/s (~45MW 1)
= Temperature : 26°C
= Pressure : 2 bar,,
= Diameter of collecting duct (before convergent) : 1.5 m

m Boundary pressure condition for flue gas at the exit

= Pressure : 0.07 bar,,

IGRC 2014 — GDF SUEZ Numerical Approach for CO, capture in flue gases within a supersonic nozzle



1D Numerical Approach : Results
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m Shape of the nozzle and shock waves

m Mach Number
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1D Numerical Approach : CO, freezing?

ATK freezing CRIGEN 1D
FREEZING PROCESS
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= The feasibility seems achievable in CRIGEN’s computed nozzle shape

= The location of the freezing starting point is about 7 cm after the sonic throat

—>good agreement with freezing measurement on ATK’s lab-scale test facility
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Modeling approach to answer these questions

Level of accuracy >
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2D Matlab® Approach : Principle and 1D Corrections

m A 2D mesh is computed based on contour simulated in 1D

m Gas parameter values are corrected in the radial direction
= Fluid heterogeneity, shock waves impact on Mach, temperature and pressure
= Correction of 1D calculations by taking those phenomenon into account

m Modified pressure, temperature and Mach number profiles (average) E
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= Reduced impact of 2D approach on Pressure (shock waves considered in 1D too0)

= Great impact on Mach number and Temperature (not considered in 1D)
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2D Numerical Approach : CO, freezing?

ATK - CRIGEN 2D
freezing
FREEZING PROCESS
03 — T | starts
Sublimation line CO.in
0.25 fiue 250 ]

— 10 with shocks

02 / 200 b Sublimatian Line _
—CFD-R20 2D

.-': 7
SOLID —:I.'——GAS—/ Ajﬂﬁ

180

\

90%
capture

rate

Pressure, bar
=
o

A . pic. |

NV EXpansion

005 = T!ﬁt“;// o

D V| | | | | | |
=" 120 140 160 180 200 220 240 260 280 300
Ternpérature (K

100 H

Pression partielle en CO2 (Pa)

8]
=

L
120 7;40 160 1 200 220 240 260 280 3l

90% capture rate | Temperature, K Stream direction

= The feasibility seems achievable in CRIGEN’s computed nozzle shape

—~>Freezing would be slightly delayed (starts at about 15 cm)
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2D Matlab® Approach : Heterogeneous Fields FoE e
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= Considering 2D aspects is important due to shock waves interactions with fluid
= Powerful 1D/2D Matlab® tool to:

* investigate operating conditions of the nozzle depending of gas composition and mass flow rate,

* improve the understanding of phenomena occurring in the nozzle

= Nevertheless, a 3D approach could be interesting to model some aspects more
accurately
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Modelling approach to answer these questions
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L evel of accuracy
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One step towards full
characterization
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approach
= Steady / unsteady
phenomena
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3D CFD simulations of the nozzle

m ANSYS-Fluent® V14.0 is used
m Nozzle shape is obtained from CRIGEN Matlab® tool

Exnienert smeteirine oss 1) 2 from ol e i

[§ 1 4 1
L bhyes

Matlab 1 million cells structured mesh

m Fluid has exactly the same properties as in 1D/2D approach
m Importance of shock waves in the nozzle (3D effects)
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3D CFD simulations : Preliminary Steady State Results

=3D CFD simulations give the same trends as the 1D computation for shock waves ...

=But here normal shock

> waves transform into
oblique waves.

0 1.000 {m) e
L rre- ANSYS
- Plane 2
&‘@ &S ,éb“'éb Eﬁ"& ’
X 2
ﬁr-a; \‘-ﬁ\ *\@ e L%

on pressure and ,

*Predicted heterogeneity

temperature fields is higher
using CFD (3D effects, and

shock waves reflections)
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Final comparison : 1D, 2D, 3D computed values vs. ATK coe s ez
and ACENT’s provided data at the exit of the nozzle

T —

= Flow properties are coherent.
=\/oid zone in the Mach cone has a greater impact on temperature levels than with
the Matlab® tool.

IGRC 2014 — GDF SUEZ Numerical Approach for CO, capture in flue gases within a supersonic nozzle 20
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Conclusions and Prospects

m CRIGEN has developed flexible 1D, 2D tool to investigate flue gas expansion in
a supersonic nozzle

> Computed values for nozzle dimensions are consistent with those announced by developers
1.5mg*3-4mL

- Desublimation seems to be achievable as announced by developers

m 3D CFD computations
- Show more precisely flue gas heterogeneity behavior in the nozzle
- Yet confirm desublimation conditions are achievable in the nozzle

m QOutcoming studies : taking into account more phenomena

> Impact of desublimation on performance : released latent heat and decreasing fluid flow - CFD
> Particles behavior in the nozzle (and particles impact on flow properties) — CFD

> New nozzle shapes (for iso-section) - CFD

> Unsteady simulations for start-up / shut-downs - CFD

m Supersonic expansion is a powerful process that can be adapted to many

separation applications

> CRIGEN tools created to characterize ICES system can be adapted to other gas separation
conditions.

IGRC 2014 — GDF SUEZ Numerical Approach for CO, capture in flue gases within a supersonic nozzle
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Any question ?

Copenhagen psaap

International Gas Union Research Conference

. . OPENHAGEN
International Gas union IG RC

Research Conference September 17-19
2014

CRIGEN-CONTROLLED ACCESS




	Dias nummer 1
	Goal of this study :
	OUTLINE
	Technology concept
	Concept of the Technology : Feasibility
	Goal of the study : does at it work as stated ?
	Modeling approach to answer these questions
	Modeling approach to answer these questions
	1D Numerical Approach : methodology
	1D Numerical Approach : Hypothesis and Conditions
	1D Numerical Approach : Results
	1D Numerical Approach : CO2 freezing?
	Modeling approach to answer these questions
	2D Matlab® Approach : Principle and 1D Corrections
	2D Numerical Approach : CO2 freezing?
	2D Matlab® Approach : Heterogeneous Fields
	Modelling approach to answer these questions
	3D CFD simulations of the nozzle
	3D CFD simulations : Preliminary Steady State Results
	Final comparison : 1D, 2D, 3D computed values vs. ATK and ACEnT’s provided data at the exit of the nozzle
	Conclusions and Prospects
	Any question ?

