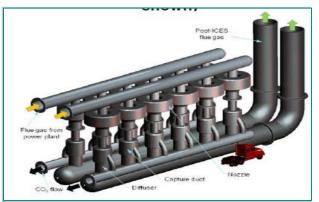
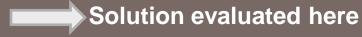


Numerical Approach for flue gas CO2 capture in a supersonic nozzle

by Erwin George, Agathe Jarry, Mailys Pale and Samuel Saysset


Copenhagen

International Gas union Research Conference 2014



Goal of this study:

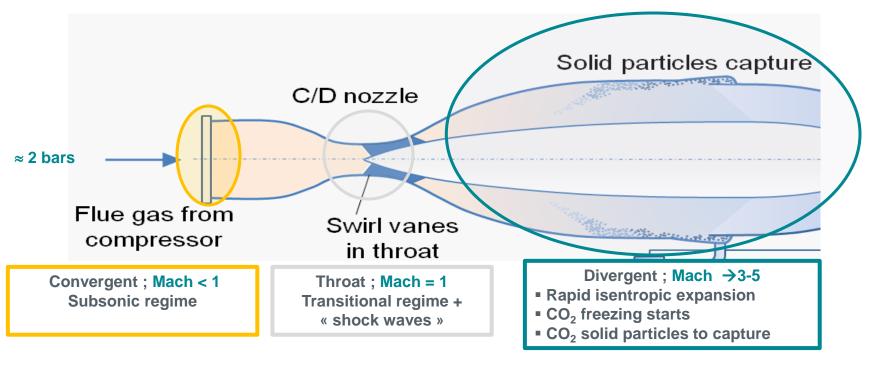
CRIGEN is involved in CO2 Capture technologies. Two particularly promising technical options using flue gas compression followed by expansion have been identified:

- Fluidized Bed: A proportion of CO2 is first frozen in a FB, and the remainder during flue gas expansion in a turbine.
- Supersonic Expansion: CO2 is frozen and captured as flue gases are thoroughly cooled in an expansion nozzle operating at supersonic regime.

OUTLINE

Post-ICES
flue gas
from
power plant

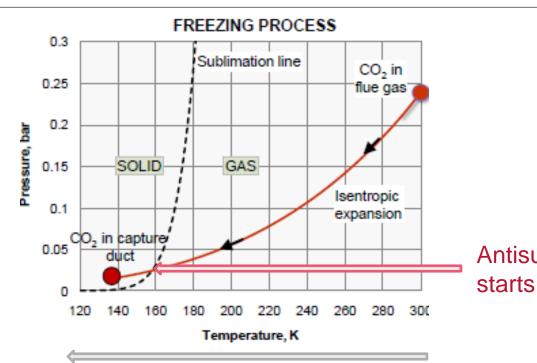
Coptuse duct


Nozzle

- Context
- Technology concept, available information
- Goal of the study
- 1D numerical approach
- 2D approach based on 1D results
- 3D (CFD) modeling
- Conclusions and Prospects

NB: This study relies on data provided by ATK and ACEnT under confidentiality agreement with GDF SUEZ

Technology concept


According to ATK and ACEnT,

- Freezing starts at -113°C ~ 0.2 bar (P_{tot})
- Targeted nozzle conditions at the divergent outlet : ~-138°C ~ 0.07 bar (P_{tot})
- CO₂ solid particle density is 10 times higher than the gas one: swirling stream would favor their recovery (centrifugal effect)

Concept of the Technology: Feasibility

Antisublimation

- Flue gas from power plant

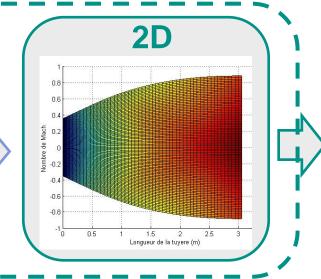
 Capture duct

 Nozzle

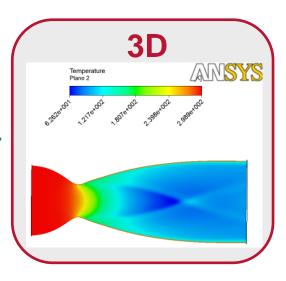
 Diffuser
- Industrial Scale Concept data from ATK and ACEnT
- →1.5 m supersonic nozzle diameter (C-D nozzle) √~ 45 MW_e
- →Supersonic nozzle length would be below 5 m.
 ✓Moderate footprint of the facility
- → About 12 nozzles for a conventional coal power plant

Goal of the study: does at it work as stated?

→ To answer this question :


- Check CO₂ frosting feasibility
 - Does the system reach (P,T) conditions for which CO₂ would desublimate?
 - How much CO₂ would desublimate ?
- Check nozzle sizing provided by ATK and ACEnT
- Check the impact of shock waves on the nozzle performance
 - How do shock waves induced by supersonic flow impact (P,T) conditions?
 - → Are conditions for desublimation still reached?
 - → Are there areas where CO₂ particles could sublimate again?
 - Would CO₂ particles move to wall regions due to supersonic stream and shock waves interactions?
- Check the impact of desublimation phenomenon on the nozzle performance
 - How would the latent heat released by CO₂ desublimation impact on (P,T) conditions in the nozzle?
 - How would the change in mass rate impact on (P,T) conditions in the nozzle?

Modeling approach to answer these questions



Level of accuracy

FUNDAMENTAL

APPLIED

Fundamental approach and feasibility

Lonqueur de la tuyere (m)

Ecoulement supersonique (supsi 10) en fonction du profil de tuvêrs

- Nozzle shape
- Rough sizing
- Sensitivity study on main operating parameters
- P,T, M profile → frosting?

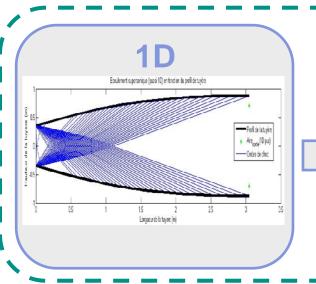
- Profil de la tuvère Aire (10 pur) Ondes de chac

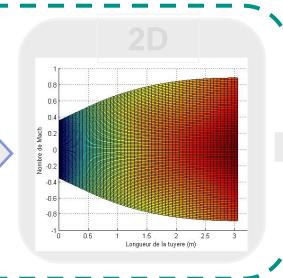
Identification of fluid heterogeneity

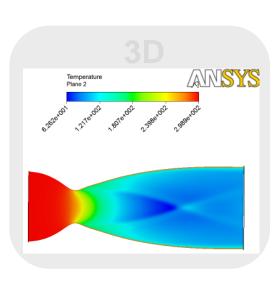
- Impact of shock waves
- Corrected (P,T,M) profile
- →Still frosting?

One step towards full characterization

- Full 3D **Euler-Euler** approach
- Steady unsteady phenomena


Modeling approach to answer these questions




Level of accuracy

FUNDAMENTAL

APPLIED

Fundamental approach and feasibility

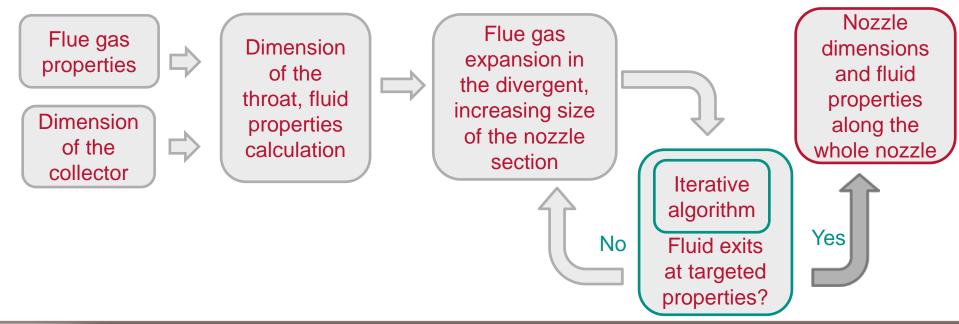
- Nozzle shape
- Rough sizing
- Sensitivity study on main operating parameters
- P,T, M profile → frosting ?

Identification of fluid heterogeneity

- Impact of shock waves
- Corrected (P,T,M) profile→ Still frosting?

One step towards full characterization

- Full 3D Euler-Euler approach
- Steady / unsteady phenomena

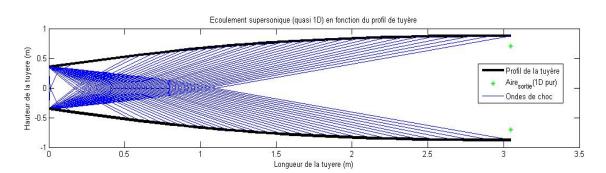

1D Numerical Approach : methodology

Matlab® program written at CRIGEN

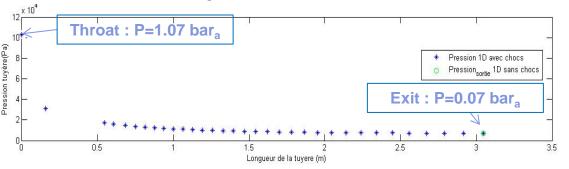
- Estimates the maximum flue gas mass flow that could be treated
- Calculates the nozzle dimensions with targeted exit properties (P, T)
- Calculates the flow properties in the supersonic nozzle
- Models shock waves starting from the throat : nozzle shape corrected within 1D approach

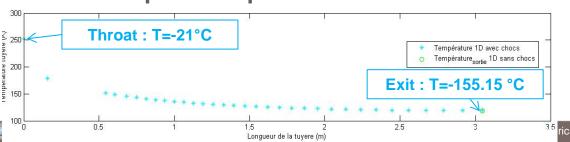
Methodology

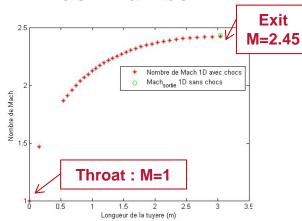
1D Numerical Approach: Hypothesis and Conditions



- 1D axis-symetrical computations
- Isentropic Compressible Flow with area change
 - Andersen works for 1D and pseudo 2D (correction with shock waves locations)
- Normal shock waves in the duct
- Flue gas (85%N₂ 15%CO₂) treated as a perfect ideal gas
- Boundary conditions for flue gas at the inlet :
 - Mass flow rate : 80 kg/s (~45MW_{eNet})
 - Temperature : 26°C
 - Pressure : 2 bar_{abs}
 - Diameter of collecting duct (before convergent): 1.5 m
- Boundary pressure condition for flue gas at the exit
 - Pressure : 0.07 bar_{abs}

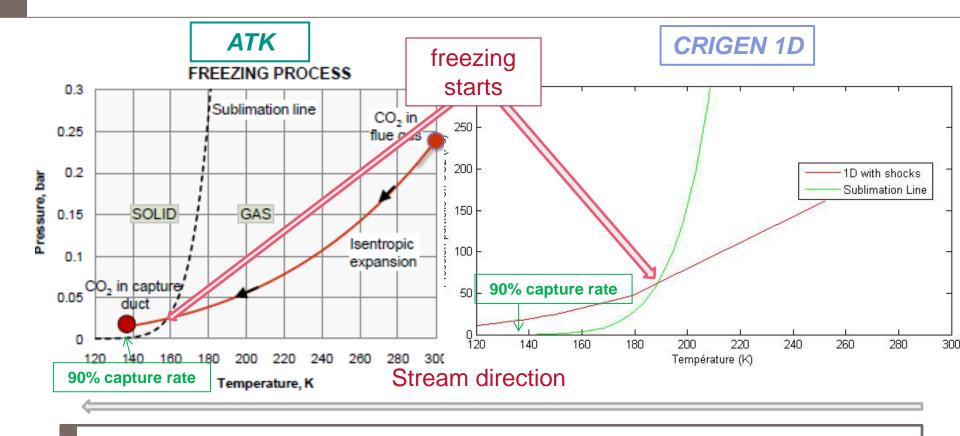

1D Numerical Approach : Results


Shape of the nozzle and shock waves


Pressure profile

Temperature profile

Mach Number

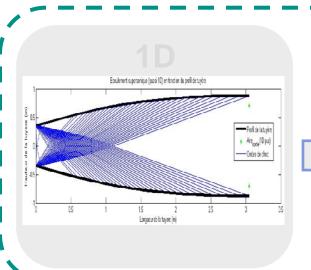

Computed dimensions in good agreement with targeted values for :

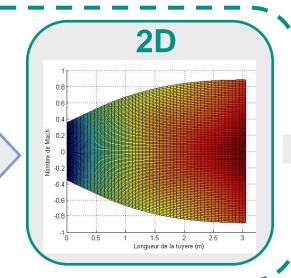
- nozzle dimensions,
- pressure level at the exit,
- temperature level for freezing feasibility

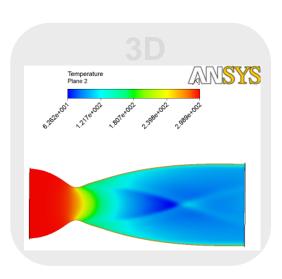
Accurate location?

1D Numerical Approach : CO₂ freezing?

- The feasibility seems achievable in CRIGEN's computed nozzle shape
- The location of the freezing starting point is about 7 cm after the sonic throat
 - →good agreement with freezing measurement on ATK's lab-scale test facility


Modeling approach to answer these questions




Level of accuracy

FUNDAMENTAL

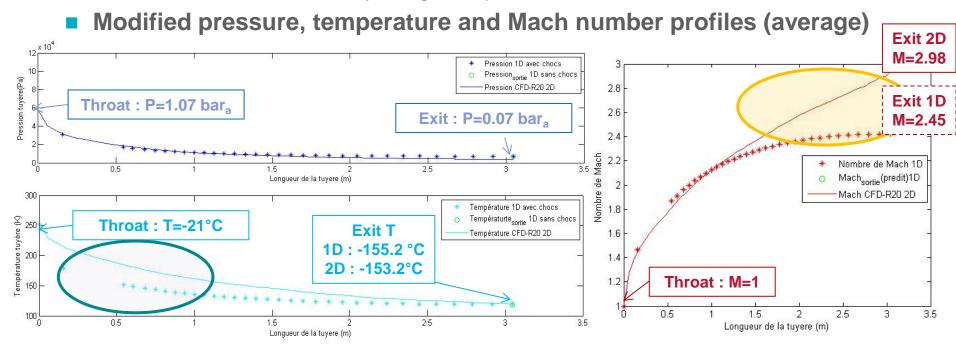
APPLIED

Fundamental approach and feasibility

- Nozzle shape
- Rough sizing
- Sensitivity study on main operating parameters
- P,T, M profile → frosting ?

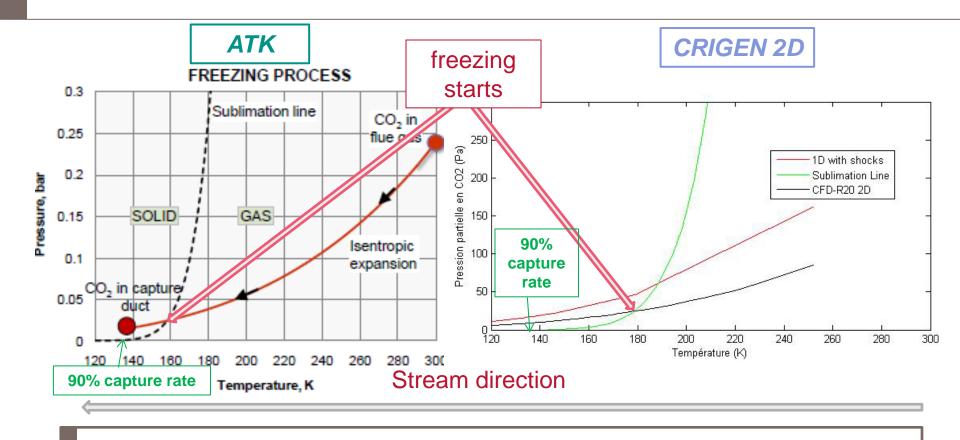
Identification of fluid heterogeneity

- Impact of shock waves
- Corrected (P,T,M) profile
- →Still frosting?


One step towards full characterization

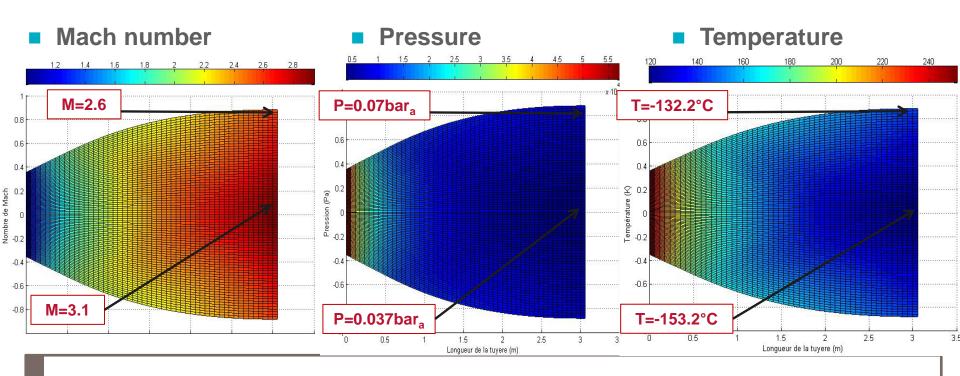
- Full 3D Euler-Euler approach
- Steady / unsteady phenomena

2D Matlab® Approach: Principle and 1D Corrections


- A 2D mesh is computed based on contour simulated in 1D
- Gas parameter values are corrected in the radial direction
 - Fluid heterogeneity, shock waves impact on Mach, temperature and pressure
 - Correction of 1D calculations by taking those phenomenon into account

- Reduced impact of 2D approach on Pressure (shock waves considered in 1D too)
- Great impact on Mach number and Temperature (not considered in 1D)

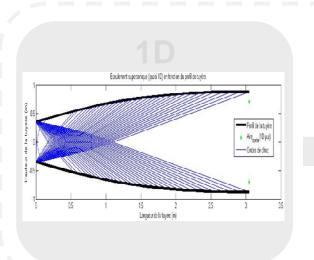
2D Numerical Approach : CO₂ freezing?

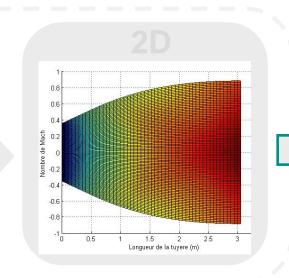


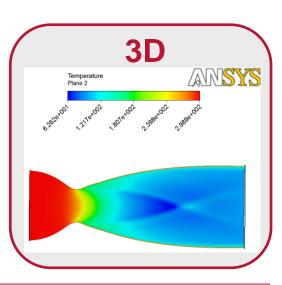
- The feasibility seems achievable in CRIGEN's computed nozzle shape
- → Freezing would be slightly delayed (starts at about 15 cm)

2D Matlab® Approach : Heterogeneous Fields

- Considering 2D aspects is important due to shock waves interactions with fluid
- Powerful 1D/2D Matlab® tool to:
 - investigate operating conditions of the nozzle depending of gas composition and mass flow rate,
 - improve the understanding of phenomena occurring in the nozzle
- Nevertheless, a 3D approach could be interesting to model some aspects more accurately


Modelling approach to answer these questions




Level of accuracy

FUNDAMENTAL

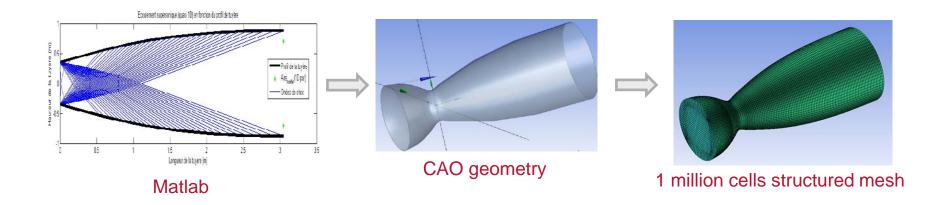
APPLIED

Fundamental approach and feasibility

- Nozzle shape
- Rough sizing
- Sensitivity study on main operating parameters
- P,T, M profile → frosting ?

Identification of fluid heterogeneity

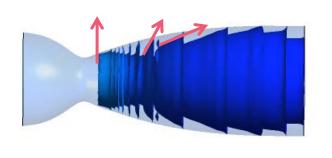
- Impact of shock waves
- Corrected (P,T,M) profile→ Still frosting?


One step towards full characterization

- Full 3D Euler-Euler approach
- Steady / unsteady phenomena

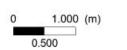
3D CFD simulations of the nozzle

- ANSYS-Fluent® V14.0 is used
- Nozzle shape is obtained from CRIGEN Matlab® tool



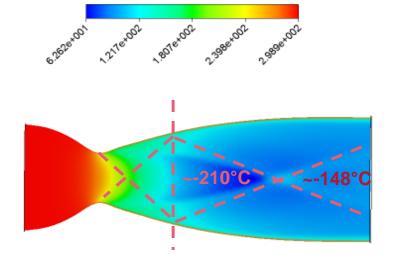
- Fluid has exactly the same properties as in 1D/2D approach
- Importance of shock waves in the nozzle (3D effects)

3D CFD simulations : Preliminary Steady State Results



•3D CFD simulations give the same trends as the 1D computation for shock waves ...

But here normal shock waves transform into oblique waves.



Predicted heterogeneity

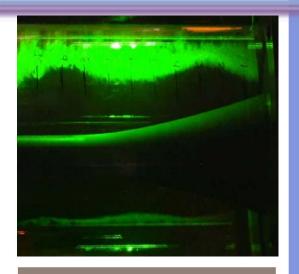
 on pressure and
 temperature fields is higher
 using CFD (3D effects, and
 shock waves reflections)

Temperature

Final comparison: 1D, 2D, 3D computed values vs. ATK cor success and ACEnT's provided data at the exit of the nozzle

	ATK	CRIGEN (1D)	CRIGEN (2D)	CFD (3D)
Diameter	IN: ~1.5 m Throat: ~1/3 of inlet diameter (*)	In : 1.5 m Throat : 0.709 m Out : 1.76 m	In : 1.5 m Throat : 0.709 m Out : 1.76 m	In : 1.5 m Throat : 0.709 m Out : 1.76 m
L	< 5 m (*)	3.05 m	3.05 m	3.05 m
Freezing point P T M	Close to the throat 0.2bar _a -114°C ~ 2	7 cm after 0.4 bar _a -85°C 1,46	15 cm afte 0.3 bar _a -95°C 1,48	14 cm after 0.26 bar _a -106°C 1,91
Exit T M	~ 0.07 bar _a ? 3-5	~ 0.07 bar _a (fixed) -155,15°C 2.45	~ 0.037-0.07 bar _a (calculated) -153,15°C 2.99	~ 0.017-0.078 bar _a (calculated) -170,3°C 3.55

- Flow properties are coherent.
- •Void zone in the Mach cone has a greater impact on temperature levels than with the Matlab® tool.


Conclusions and Prospects

- CRIGEN has developed flexible 1D, 2D tool to investigate flue gas expansion in a supersonic nozzle
- → Computed values for nozzle dimensions are consistent with those announced by developers 1.5 m ø * 3-4m L
- → Desublimation seems to be achievable as announced by developers
- 3D CFD computations
- → Show more precisely flue gas heterogeneity behavior in the nozzle
- → Yet confirm desublimation conditions are achievable in the nozzle
- Outcoming studies : taking into account more phenomena
- → Impact of desublimation on performance : released latent heat and decreasing fluid flow CFD
- → Particles behavior in the nozzle (and particles impact on flow properties) CFD
- → New nozzle shapes (for iso-section) CFD
- → Unsteady simulations for start-up / shut-downs CFD
- Supersonic expansion is a powerful process that can be adapted to many separation applications
- → CRIGEN tools created to characterize ICES system can be adapted to other gas separation conditions.

Any question?

Copenhagen

International Gas union Research Conference 2014

CRIGEN-CONTROLLED ACCESS

